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ABSTRACT

Reusable decision structure survives across episodes in reinforcement learning,
but this depends on how the agent—world boundary is drawn. In stationary, finite-
horizon MDPs, an invariant core: the (not-necessarily contiguous) subsequences
of state—action pairs shared by all successful trajectories (optionally under a simple
abstraction) can be constructed. Under mild goal-conditioned assumptions, it’s exis-
tence can be proven and explained by how the core captures prototypes that transfer
across episodes. When the same task is embedded in a decentralized Markov game
and the peer agent is folded into the world, each peer-policy update induces a
new MDP; the per-episode invariant core can shrink or vanish, even with small
changes to the induced world dynamics, sometimes leaving only the individual task
core or just nothing. This policy-induced non-stationarity can be quantified with a
variation budget over the induced kernels and rewards, linking boundary drift to
loss of invariants. The view that a continual RL problem arises from instability of
the agent—world boundary (rather than exogenous task switches) in decentralized
MARL suggests future work on preserving, predicting, or otherwise managing
boundary drift.

1 INTRODUCTION

Reinforcement learning (RL) formalizes sequential decision making as interaction between an agent
and a world (Javed & Sutton, |2024). A modeling choice— the agent—world boundary—partitions
what adapts inside the agent (state, memory, policy) from external dynamics. In the standard finite-
horizon MDP, this boundary appears sharp: a policy 7 acts on states S and actions A, the world
evolves via P(- | s,a), and rewards R(s, a) provide feedback; stationarity and the Markov property
render this interface time-invariant, and memoryless (Sutton & Barto, 2018)).

This apparent precision is a property of the modeling assumptions, not of the underlying system or
problem. Value functions and guarantees can change with the boundary or representation, motivating
boundary-invariant/representation-robust formulations (Jiang et al.,2015) and showing that moving
internal dynamics into the agent alters theoretical guarantees such as regret bounds (Jin et al., 2020).
The boundary is enacted by the modeler; different framings induce different notions of agency (Abel
et al., [2025; |[Harutyunyan, [2020).

A second subtlety is non-stationarity. In continual RL (CRL), rewards or dynamics shift over time
(Khetarpal et al., [2020). In multi-agent RL (MARL), peers’ evolving policies induce effective
dynamics for a focal learner (Littman, |1994; |Claus & Boutilier, |1998)). Peers may be modeled as
stochastic environmental features or as components of a centralized system (Busoniu et al., 2008;
Shoham & Leyton-Brown,|2008;|Oliehoek & Amato, 2016)). In decentralized settings with unobserved
peer internals, each peer update changes the induced transition kernel and thus the learning problem
(Claus & Boutilier, [1998; Bowling & Veloso, 2002). Consequently, the agent—world boundary itself
becomes unstable, and stationarity can fail even at short horizons.
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The environment boundary as a continual learning problem was described by Khetarpal et al. who
emphasized that non-stationarity should be characterized both by its scope (which parts of the inter-
action process change) and its driver (whether change is passive/exogenous, active/agent-influenced,
or hybrid) (Khetarpal et al.,[2020). Crucially, learning in the presence of other learning agents as a
prototypical CRL regime: an (active) Markov game can be stationary at the joint level, while a single
learner experiences non-stationary effective rewards and transitions as peers update their policies
(Khetarpal et al.,[2020; |[Kim et al.,[2022)). Equivalently, this can be viewed as partial observability,
where unobserved peer policies (or learning states) act as a latent task variable that must be inferred
online (Khetarpal et al.| 2020).

Contributions.

1. Stationary, finite-horizon MDP tasks are formalized as decision tries over state—action
trajectories and use this view to reason about shared structure among successes.

2. An invariant core: the set of <-maximal subsequences common to all successful trajectories
(optionally under a task-appropriate abstraction) is defined, and existence proven under mild
goal-conditioned assumptions.

3. Decentralized MARL is shown that by folding peers into the world yields a drifting sequence
of induced MDPs as peer policies change, so episode-wise invariant cores can lose prototypes
or motifs across episodes.

4. This vanishing is argued as continual learning driven endogenously by boundary drift (not
an exogenous task schedule), explaining when transfer fails between episodes.

5. Drift via a variation budget is quantified over the induced MDP sequence, connecting
stability of reuse to boundary instability.

Assumptions are explicitly stated so claims about existence and stability of the core can be verifiable
within standard RL theory but sketches are provided to motivate intuition for a general reader.

2 THE AGENT-WORLD BOUNDARY DRIFTS AS POLICIES UPDATE OVER TIME

RL begins with a modeling choice: an agent—world boundary that determines what adapts inside
the agent and what is treated as fixed dynamics. In single-agent, stationary MDPs this boundary is
fixed, and successful episodes reuse common decision structure; in particular, certain subsequences
of state—action pairs are shared by all successful trajectories. We formalize these shared prototypes
or motifs as elements of an invariant core set. By contrast, in decentralized two-agent Markov
games, the other agent induces world-dynamics that depend on that agent’s policy; as they update,
the effective MDP drifts across episodes and reusable prototypes that were reusable can disappear.

This endogenously changing agent—world boundary poses a continual-learning problem: stability of
learned structure is not only a function of exogenous task switches but also of how the boundary is
drawn because peer agents are adapting to change.

2.1 THE BOUNDARY IS STABLE IN SINGLE-AGENT TASKS

Let M = (S, A, P, R, H, G) be a finite-horizon, goal-conditioned MDP with horizon H and goal set
G C S. Episodes terminate on first visit to G. A (state—action) trajectory is 7 = (s1, a1, ..., ST, ar)
with T' < H. Define the set of successful trajectories

S = {7': EItgHwithstEG}.

For sequences u, v over S X A, write u < v if u is a (not-necessarily contiguous) subsequence of v.

Trajectory trie representation Let O be any multiset of trajectories (e.g., a dataset of rollouts).
The trajectory tree T(©) is the trie over the alphabet S x A whose nodes are prefixes u € (S x A)<#
that appear in some 7 € O; the root is the empty prefix, and each edge appends one pair (s, a;). We
label a leaf (or any prefix) with a success indicator y(u) € {0, 1} equal to 1 if some extension of u
reaches G within H and 0 otherwise. This view is purely representational; the key object for us is the
set S.
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Invariant core To capture reusable prototypes, we define the core as the set of <-maximal subse-
quences shared by all successful trajectories. Because exact prototypes may be semantically clearer
after aggregation (e.g., options), we allow an optional task-specific abstraction ¢ : S x A — 3 (Dean
& Givan, [1997; L1 et al.| [2006; |Abel et al., [2016)) and write

Corey(S) = mﬁx{u exsH.vreS, us<o(r) },

S

with Core(S) denoting the identity-abstraction case.

Theorem 2.1 (Existence). If G = {g} is a unique absorbing goal and episodes terminate on first
visit to g, then Core(S) # (). More generally, if there exists an abstraction ¢ such that every T € S
contains a common abstract symbol (e.g., an option such as open_door), then Core,(S) # (.

Sketch. S is written for the set of successful state—action trajectories of length at most H. Under a
unique absorbing goal g, every 7 € S visits g at some time ¢ < H, so all sequences in S share at
least one common symbol and hence admit a nonempty common subsequence. Because H < oo,
there are finitely many subsequences drawn from &, so <-maximal common subsequences exist; any
longest common subsequence (LCS) of S is such a maximal element and therefore belongs to the
core. The same argument holds in the abstract alphabet > whenever a common abstract symbol is
guaranteed by ¢. O

In practice one would observe a set of trajectory rollouts ©; the trajectory trie 7 (©) (a prefix tree
over S x A) provides a convenient way to enumerate successful leaves and search for common
subsequences among them. Computing an exact LCS scales as O( H?) for two sequences and O(H")
by naive dynamic programming for k sequences, with the generalized problem NP-hard when k is
part of the input. This computational profile motivates using an abstraction ¢ (e.g., options/skills)
to reduce the alphabet and isolate shorter, semantically meaningful prototypes (Sutton et al., 1999
Konidaris & Bartol 2009). Classical methods could reduce complexity as well (Hunt & Szymanski,
1977). In canonical key—door tasks (Chevalier-Boisvert et al., 2018 [Hung et al., 2019} [Sun et al.,
2023)), for example, every successful trajectory contains the abstract pattern

find key — reach_door — open_door,

which thus appears in Core,(S) and can be implemented as reusable options across episodes while
the agent—world boundary remains stationary.

Now a policy 7 can be considered used to collect trajectories, and let ©; denote the resulting
trajectory set and the trajectory tree as 71. The Core(S); is the core computed from the successful
leaves of 77. In a stationary MDP the environment (P, R) is exogenous and does not depend on the
agent’s policy; changing the policy may change preferences of trajectories over others but does not
alter which trajectories are successful. Hence, if 77 is complete in the sense that its successful leaves
enumerate all successful trajectories of M, the resulting core depends only on (M, G, ¢) and not
on the policy used to gather the trajectory. In particular, for any other policy w2 with a complete
trie 75 we have Corey(S)1 = Corey(S)2. Operationally, querying a complete core results in a
goal-reaching behaviour that remains valid across policy updates; under the standard terminal-reward
objective, executing such a process attains the optimal value. This policy-independence of (P, R) is
precisely why the core is invariant in the single-agent, stationary setting and follows directly from a
stable agent—world boundary: the policy 7y lies on the agent side while (P, R) lie on the world side
and, in the stationary single-agent case, are therefore invariant to 7.

2.2 THE AGENT-WORLD BOUNDARY SHIFTS WITH ANOTHER AGENT

Now, the same task can be extended to a two-player decentralized Markov game G =
(S, A1, A2, P, Ry, H,G) (Littman, [1994). In episode e, agent 2 follows a policy 75(- | s) that
is unknown to the focal agent. From the focal agent’s view, the environment is a single-agent MDP

P.(s"| s,a1) = Z P(s" | s,a1,a2) 5(az | s), R.(s,a1) = Z Ry (s,a1,a2) m5(az | s),
az2€A2 az€A

so acting in the game at episode e is equivalent to acting in M, = (S, A, Pe, Re, H, G) (Oliechoek &
Amatol 2016} Busoniu et al.| 2008)). The agent—world boundary thus encloses an adaptive peer; as 75
changes across episodes, the induced dynamics P, (and possibly R.) drift.
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Let S, be the set of successful trajectories in M, and define the episode-wise core
Corey(Se) = max {u eyst.vres,, usx qS(T)}.

Under the same mild conditions as Theorem [2.1] (unique absorbing goal or a common abstract
symbol), each Corey(S.) exists; however, nothing guarantees stability across episodes.

Proposition 2.1 (Episode-to-episode core drift). There exist Markov games and peer policy updates
7§ — 75! such that a prototype u € Corey(S.) is not in Corey(Sey1). Moreover, for suitable tasks
one can have Corey(S.) N Corey(Sey1) = @ after removing the trivial terminal symbol.

Sketch Consider an episode e. Let u € Coreg(Se), so u < ¢(7) for every successful sequence
T € S.. The task G = (S, A1, Ao, P, Ry, H, G) is unchanged; only the peer’s policy updates from 75
to 7r§+1, thereby changing the set of successful sequences from S, to S, 1. If the update admits any
success T € Set1 with u £ ¢(7) (e.g., the peer resolves an individual subgoal differently so the focal
agent reaches g without executing w), then by definition u ¢ Corey(Se41). Thus Core,(S.) and
Corey(Se+1) can differ, even if the underlying task is fixed, purely due to the peer’s policy change.
Therefore a piece of the core can vanish between episodes, leaving only the policy-independent
individual task core or, after removing the trivial terminal symbol, nothing:

Corey(Se) N Corey(Ser1) € Coreingividual and possibly just & O

Intuitively, because the peer is part of the world, its policy 75 determines which subgoals and partial
plans are feasible, thereby changing the set of successful trajectories S, and the prototypes shared
across them. Although each per-episode core Core,(S.) exists, prototypes that were universal at
episode e need not persist at e+1. For example, in a cooperative key—door variant (Malenfant &
Richards|, 2025), if success at episode e requires the prototype

drop_key_for_peer — peer_agent_reaches_door — peer_agent_opens_door

but after the updating the peer acquires the key independently, that prototype is absent from all
successes at e+1. Thus episode-wise invariant cores need not agree: the overlap Corey(Se) N
Corey(Se+1) reduces to at most the policy-independent individual task core (or even completely
empty). This is similar to multi-agent experience replay (Foerster et al.,2017). A variation budget
quantifies this drift over the induced sequence { M, } for transfer stability across episodes.

2.3 A VARIATION BUDGET FROM SHIFTING MDPS CAN MEASURE THIS CHANGE

To quantify drift across episodes, define

E
Vg = Z (supz |Pe(s'| s,a1) — Pe1(s'| s,a1)| + sup|Re(s,a1) — Re_l(s,al)‘).
e=2 s,a1 s/ s,a1
Equivalently, Vp = Zfzg ([P = Pecilli,oo + [[Re — Re-1lloc), where [[Pllicc =

sup; o, > |P(s" | 8,a1)|. By construction, Vg = 0iff (P, R.) are stationary, implying Se = S, 1
and hence Corey(S.) = Corey(Se—1). Any peer-policy update that changes (P, R) on some (s, a1)
contributes positively to Vg; when this change adds or removes successful sequences, a prototype
can vanish, leaving at most the policy-independent individual task core (or even & ). This is the
standard drifting-MDP measure (Even-Dar et al.,[2009; Cheung et al.| 2020; Mao et al.} 2021) and
each episodic instance of the peer agent’s policy can be viewed as analogous to a new MDP.

3 CONCLUSION

When and why reusable structure in RL survives across episodes was attempted to be formalized, and
to show how the decentralization of agents destabilizes it through the agent-world boundary which
was perceived as a continual learning problem (Khetarpal et al.,2020). Our analysis introduced an
invariant core (i.e common subsequences of successful trajectories), proved its existence in stationary
single-agent settings under mild assumptions (unique absorbing goal or an appropriate abstraction),
and showed that embedding the task in a decentralized Markov game induces policy-driven drift
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that can remove previously shared prototypes. A quantification of this drift was then shown with a
variation budget Vg, linking agent-world boundary movement to the loss of invariants and explaining
why transfer can fail even when the underlying task is unchanged.

This boundary-centered view matters because it reframes decentralized MARL as continual RL. Not
only as adaptation to non-stationarity, but as robustness to agent—world boundary instability. Further
work should consider: 1. preserve invariants via options or deviation mechanisms that remain valid
under small Vg (Elelimy et al.,2025; Sutton et al., | 1999; [Konidaris & Bartol, 2009) and 2. predict or
influence boundary shifts to be predictable via opponent modeling or recursive reasoning so cores
remain exploitable (He et al.,[2016; Raileanu et al., 2018} [Foerster et al., 2018} Jaques et al., 2019).
Possible next steps include algorithms with guarantees that scale in Vg, online estimation of Vg from
rollouts, and benchmarks that vary the boundary in controlled ways. Altogether, these considerations
frame decentralized MARL as a continual-RL problem grounded in the agent—world boundary.
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